University of Mannheim School of Social Sciences Math Refresher for Political Science, Fall 2025 Carlos Gueiros

Solutions Analysis II

- 1. Suppose the function f is defined for all $x \in [-1.5, 2.5]$ by $f(x) = x^5 5x^3$.
 - (a) Determine for which values of x the value of the function is equal to zero.

$$x^{5} - 5x^{3} = 0$$

$$x^{5} = 5x^{3}$$

$$x^{2} = 5$$

$$x = \pm\sqrt{5}$$

From the second equation we see that x=0 is a possible solution. For $x=\pm\sqrt{5}$ we have to check whether these points are in our domain. This is true for $x=\sqrt{5}$, but not for $x=-\sqrt{5}$. Thus, the function has two roots.

(b) Calculate f'(x) and find the extreme points of f. What is the maximum/the minimum of the function.

$$f'(x) = 5x^4 - 15x^2$$
. The FOC gives us.

$$5x^{4} - 15x^{2} = 0$$

$$5x^{4} = 15x^{2}$$

$$x^{2} = 3$$

$$x = \pm\sqrt{3}$$

When checking for the domain, we find that x = 0 and $x = \sqrt{3}$ serve as possible extreme points. Now we need to check the SOC.

$$f''(x) = 20x^{3} - 30x$$

$$f''(x = 0) = 0$$

$$f''(x = \sqrt{3}) = 30\sqrt{3} > 0$$

At x = 0 we have a saddle point. At $x = \sqrt{3}$ there is a minimum.

Are there any other minima/maxima? Yes, of course. We have to consider the boundaries of our domain. Both at x = -1.5 and x = 2.5 we have additional maxima.

The overall maximum of the function is attained at x = 2.5 with $f(x) \approx 19.5$. The overall minimum is $x = \sqrt{3}$ with $f(x) \approx -10.4$. (c) Does the function have inflection points?

Yes, it does. We already found the first inflection point, which also happens to be a saddle point.

We find the additional inflection points by setting f''(x) = 0. This gives $x = \pm \sqrt{1.5}$.

2. Which of the following functions of x are convex? Which are concave?

(a)
$$f(x) = (2x - 1)^6$$

 $f'(x) = 6(2x - 1)^5 \cdot 2$
 $f''(x) = 5 \cdot 12(2x - 1)^4 \cdot 2 \ge 0 \Longrightarrow \text{convex}$

(b) f(x) = 5x + 7

The function is both convex and concave since the sets of points above and below the function are convex.

(c)
$$f(x) = x^5$$

 $f'(x) = 5x^4$
 $f''(x) = 20x^3$

The function as a whole is neither convex nor concave (but we can specify this for parts of the function).

(d)
$$f(x) = \sqrt{1+x^2}$$

 $f'(x) = x(1+x^2)^{-\frac{1}{2}}$
 $f''(x) = (1+x^2)^{-\frac{1}{2}} + x^2(1+x^2)^{-\frac{3}{2}} > 0 \Longrightarrow \text{strictly convex}$

(e)
$$f(x) = x^5$$
 for $x \ge 0$
 $f''(x) = 20x^3 \ge 0 \ \forall \ x \ge 0 \Longrightarrow \text{convex}$

(f)
$$f(x) = 5x^2 - x^4$$
 for $x \ge 1$
 $f'(x) = 10x - 4x^3$
 $f''(x) = 10 - 12x^2 < 0 \ \forall \ x \ge 1 \Longrightarrow \text{strictly concave}$

- 3. Appeasement Problem (Ashworth and Bueno de Mesquita, 2006). For full text see exercise set.
 - (a) Take the derivative with respect to x, set up the FOC, and solve for x.

$$\begin{array}{rcl} 1 - 2x - q & = & 0 \\ x^*(q) & = & \frac{1 - q}{2} \end{array}$$

- $x^*(q)$ represents state S's optimal choice of appeasement as a function of S's perceived military strength.
- (b) We can find comparative statics by examining how this equilibrium offer $(x^*(q))$ changes when q changes. Differentiating $x^*(q)$ with respect to q yields:

$$\frac{\partial x^*(q)}{\partial q} = -\frac{1}{2} < 0$$

Not surprisingly, the optimal offer is decreasing in q. The stronger S is militarily, the less willing S is to appear D.

4. A government has to decide about the allocation of its budget. Let x denote the share of the budget used for military and y the share of the budget used for social expenditures. The government has to use of all its budget and has the following utility function:

$$u(x,y) = e^{2x} + e^{2y}$$

Solve the government's optimization problem.

The governments optimization problem is:

$$\max_{x,y} e^{2x} + e^{2y} \text{ s.t.}$$
$$x + y = 1$$

Setting up the Langrangian yields:

$$\mathcal{L} = e^{2x} + e^{2y} - \lambda(x+y-1)$$

Taking the partial derivatives with respect to x, y together with the budget constraint gives:

$$\frac{\partial \mathcal{L}}{\partial x} = 2e^{2x} - \lambda$$

$$\frac{\partial \mathcal{L}}{\partial y} = 2e^{2y} - \lambda$$

$$x + y = 1$$

Setting the first and the second equation equal yields:

$$2e^{2x} - \lambda = 2e^{2y} - \lambda$$
$$x = y$$

Together with the budget constraint we know that, $x = y = \frac{1}{2}$.

- 5. Consider the function $f(x) = (x^2 + 2x)e^{-x}$.
 - (a) Determine for which values of x the value of the function is equal to zero. We have to set $(x^2 + 2x)e^{-x} = 0$. We know that $e^{-x} > 0 \,\forall x \in \mathbb{R}$. Thus,

$$x^{2} + 2x = 0$$

$$x = \frac{-2 \pm \sqrt{4 - 0}}{2} = -1 \pm 1$$

The roots of the function are x = -2 and x = 0.

(b) Calculate f'(x) and find the extreme points of f. What is the maximum/the minimum of the function?

$$f(x) = (x^{2} + 2x)e^{-x}$$

$$f'(x) = -(x^{2} + 2x)e^{-x} + (2x + 2)e^{-x}$$

$$f''(x) = (x^{2} + 2x)e^{-x} - 2(2x + 2)e^{-x} + 2e^{-x}$$

We take the FOC f'(x) = 0 to look for stationary points.

$$-(x^{2} + 2x)e^{-x} + (2x + 2)e^{-x} = 0$$
$$-(x^{2} + 2x) + (2x + 2) = 0$$
$$-x^{2} + 2 = 0$$
$$x = \pm \sqrt{2}$$

We have stationary points at $x = \pm \sqrt{2}$. We now have to check the SOC.

$$f''(x) = (x^{2} + 2x)e^{-x} - 2(2x + 2)e^{-x} + 2e^{-x}$$
$$= (x^{2} + 2x - 2x - 2 - 2x - 2 + 2)e^{-x}$$
$$= (x^{2} - 2x - 2)e^{-x}$$

Again, we know that $e^{-x} > 0 \, \forall x \in \mathbb{R}$, so that we only have to consider the polynomial. For $x = -\sqrt{2}$, the polynomial $(2 + 2\sqrt{2} - 2) > 0 \Longrightarrow \text{local minimum}$.

For $x = \sqrt{2}$, the polynomial $(2 - 2\sqrt{2} - 2) < 0 \Longrightarrow local$ maximum.

As the domain is not limited, we have to check for the limit of f(x) for $x \to \pm \infty$ in order to specify whether the local extreme points are also global.

$$\lim_{x \to -\infty} (x^2 + 2x)e^{-x} \approx e^{-x} = \infty$$
$$\lim_{x \to \infty} (x^2 + 2x)e^{-x} \approx e^{-x} = 0$$

Therefore, the function does not have a global maximum. However, it has a global minimum since $f(-\sqrt{2}) < \lim_{x \to \infty} f(x)$.

(c) Does the function have inflection points? Yes, the function does have inflection points.

$$f''(x) = 0$$

$$(x^{2} + 2x)e^{-x} - 2(2x + 2)e^{-x} + 2e^{-x} = 0$$

$$(x^{2} + 2x) - 2(2x + 2) + 2 = 0$$

$$x^{2} - 2x - 2 = 0$$

$$x = \frac{2 \pm \sqrt{4 + 8}}{2}$$

$$x = 1 \pm \sqrt{3}$$

(d) Sketch the function and specify whether it is convex/concave (in sections).

The function is neither convex nor concave as a whole.

For concavity/convexity in parts of the function the inflection points are crucial.

We can see from the graph that the function is convex for all

$$x \in (-\infty, 1 - \sqrt{3}]$$
 and $x \in [1 + \sqrt{3}, \infty)$.
It is concave for all $x \in [1 - \sqrt{3}, 1 + \sqrt{3}]$

6. Derivate the indefinite integrals:

(a)
$$\int \frac{1}{\sqrt{x}} dx = 2\sqrt{x} + C$$

(b)
$$\int e^{-4t} dt = -\frac{1}{4e^{4t}} + C$$

(c)
$$\int x\sqrt{x}dx = \frac{2}{5}x^{\frac{5}{2}} + C$$

(d)
$$\int \frac{1}{x} = \ln x dx + C$$

(e)
$$\int (2x^2 + x - 3)dx = \frac{2}{3}x^3 + \frac{1}{2}x^2 - 3x + C$$

(f)
$$\int \frac{(x^4+1)^2}{x^3} dx = \frac{1}{6}x^6 + x^2 - \frac{1}{2x^2} + C$$

7. Calculate $\int_0^2 (2x^2 + x - 3) dx$. Hint: Make a sketch of the function before.

At x=1, the curve crosses the horizontal axis. In order to compute the total area "under the curve", compute $\int_0^1 (2x^2+x-3)dx + \int_1^2 (2x^2+x-3)dx$. Using the result from 1e, we can write:

$$\int_{0}^{1} (2x^{2} + x - 3)dx + \int_{1}^{2} (2x^{2} + x - 3)dx = \left| \frac{2}{3} + \frac{1}{2} - 3 - (0) \right| + \left| \frac{2}{3} 2^{3} + \frac{1}{2} 2^{2} - 3 \cdot 2 - \left(\frac{2}{3} + \frac{1}{2} - 3 \right) \right|$$

$$= \frac{11}{6} + \frac{4}{3} + \frac{11}{6}$$

$$= 5$$